User Manual
Digital Multimeter
model no.: MSR-U1000

ETEKCITY®
Overview

This Operating Manual covers information on safety and cautions. Please read the relevant information carefully and observe all the Warnings and Notes strictly.

⚠️ Warning

To avoid electric shock or personal injury, read the Safety Information” and "Rules for Safety Operation” carefully before using the Meter.

Digital Multimeter is an auto ranging multimeter. The enclosure structure design adopted advanced co-injection technique in order to provide sufficient insulation.

The Meter can measure AC/DC Voltage and Current, Resistance, Diode, Continuity Buzzer, Capacitance, Frequency, hFE and EF Function. In addition to the conventional measuring functions, there is data hold, relative mode, peak measurement, low battery display, display backlight and sleep mode.

Unpacking Inspection

Open the package case and take out the Meter. Check the following items carefully to see any missing or damaged part:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Operating Manual</td>
<td>1 piece</td>
</tr>
<tr>
<td>2</td>
<td>Test Lead</td>
<td>1 pair</td>
</tr>
<tr>
<td>3</td>
<td>Multi-Purpose Socket</td>
<td>1 piece</td>
</tr>
<tr>
<td>4</td>
<td>9V Battery (NEDA1604, 6F22 or 0006P) (installed inside the Meter)</td>
<td>1 piece</td>
</tr>
</tbody>
</table>

Safety Information

This Meter complies with the standards IEC61010: in pollution degree 2, overvoltage category (CAT. III 1000V, CAT. IV 600V) and double insulation.

CAT III: Distribution level, fixed installation, with smaller transient overvoltages than CAT. IV.

CAT IV: Primary supply level, overhead lines, cable systems etc.

Use the Meter only as specified in this operating manual, otherwise the protection provided by the Meter may be impaired.

In this manual, a Warning identifies conditions and actions that pose hazards to the user, or may damage the Meter or the equipment under test.

A Note identifies the information that user should pay attention on.

International electrical symbols used on the Meter.
Warning
To avoid possible electric shock or personal injury, and to avoid possible damage to the Meter or to the equipment under test, adhere to the following rules:

- Before using the Meter inspect the case. Do not use the Meter if it is damaged or the case (or part of the case) is removed. Look for cracks or missing plastic. Pay attention to the insulation around the connectors.
- Inspect the test leads for damaged insulation or exposed metal. Check the test leads for continuity. Replace damaged test leads with identical model number or electrical specifications before using the Meter.
- Do not apply more than the rated voltage, as marked on the Meter, between the terminals or between any terminal and grounding.
- The rotary switch should be placed in the right position and no any changeover of range shall be made during measurement is conducted to prevent damage of the Meter.
- When the Meter working at an effective voltage over 60V in DC or 30V rms in AC, special care should be taken for there is danger of electric shock.
- Do not use or store the Meter in an environment of high temperature, humidity, explosive, inflammable and strong magnetic field. The performance of the Meter may deteriorate after dampened.
- When using the test leads, keep your fingers behind the finger guards.
- Disconnect circuit power and discharge all high-voltage capacitors before testing resistance, continuity and diodes.
- Before measuring current, check the Meter is fused and turn off the current to be tested before connecting the Meter to the circuit. After connecting the circuit reliably, turn the current to be tested on.
- Replace the battery as soon as the battery indicator appears. With a low battery, the Meter might produce false readings that can lead to electric shock and personal injury.
- When servicing the Meter, use only the same model number or identical electrical specifications replacement parts.
- The internal circuit of the Meter shall not be altered at will to avoid damage of the Meter and any accident.
- Soft cloth and mild detergent should be used to clean the surface of the Meter when servicing. No abrasive and solvent should be used to prevent the surface of the Meter from corrosion, damage and accident.
- The Meter is suitable for indoor use.
- Turn the Meter off when it is not in use and take out the battery when not using for a long time.
- Constantly check the battery as it may leak when it has been using for some time, replace the battery as soon as leaking appears. A leaking battery will damage the Meter.

International Electrical Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🌪️</td>
<td>AC or DC</td>
</tr>
<tr>
<td>🌪️</td>
<td>Grounding</td>
</tr>
<tr>
<td>🌪️</td>
<td>Double Insulated</td>
</tr>
<tr>
<td>🌪️</td>
<td>Deficiency of Built-In Battery</td>
</tr>
<tr>
<td>🌪️</td>
<td>Warning. Refer to the Operating Manual</td>
</tr>
<tr>
<td>🌪️</td>
<td>Conforms to Standards of European Union</td>
</tr>
</tbody>
</table>

The Meter Structure (see figure 1)

1. LCD Display
2. Functional Buttons
3. Blue button
4. Rotary Switch
5. Input Terminal:

Rotary Switch

Below table indicated for information about the rotary switch positions.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>AC and DC Voltage Measurement</td>
</tr>
<tr>
<td>mV</td>
<td>AC and DC Voltage Measurement</td>
</tr>
<tr>
<td>Ω</td>
<td>Resistance Measurement</td>
</tr>
<tr>
<td>🔗</td>
<td>Diode Test</td>
</tr>
<tr>
<td>📢</td>
<td>Continuity Test</td>
</tr>
<tr>
<td>📢</td>
<td>Capacitance Test</td>
</tr>
<tr>
<td>Hz</td>
<td>Frequency and Duty Cycle Test</td>
</tr>
<tr>
<td>%</td>
<td>Frequency and Duty Cycle Test</td>
</tr>
<tr>
<td>hFE</td>
<td>Transistor</td>
</tr>
<tr>
<td>µA</td>
<td>DC and AC current measurement</td>
</tr>
<tr>
<td>mA</td>
<td>DC and AC current measurement</td>
</tr>
<tr>
<td>10A</td>
<td>10A DC and AC current measurement</td>
</tr>
<tr>
<td>EF</td>
<td>Sensor Test</td>
</tr>
<tr>
<td>OFF</td>
<td>Power off</td>
</tr>
</tbody>
</table>
Functional Buttons

Below table indicated for information about the functional button operations.

<table>
<thead>
<tr>
<th>Button</th>
<th>Operation Performed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIGHT</td>
<td>Press and hold for 2 seconds to turn the display backlight on or off.</td>
</tr>
<tr>
<td>Hold</td>
<td>Press to enter or exit data hold mode.</td>
</tr>
<tr>
<td>BLUE Button</td>
<td>Press to select the alternate function.</td>
</tr>
</tbody>
</table>
| RANGE | ● Press RANGE to enter the manual ranging mode; the Meter beeps.
| | ● Press RANGE to step through the ranges available for the selected function; the Meter beeps.
| | ● Press and hold RANGE for 2 seconds to return to autoranging; the Meter beeps. |
| MAX/MIN | Press to select the maximum and minimum value. |
| REL Δ | ● Press to enter REL mode.
| | ● Press again to exit REL mode. |

Display Symbols

<table>
<thead>
<tr>
<th>No.</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>![Data Hold]</td>
<td>Data hold is active.</td>
</tr>
<tr>
<td>2</td>
<td>![Sleep Mode]</td>
<td>Sleep Mode indicator.</td>
</tr>
<tr>
<td>3</td>
<td>![Negative Reading]</td>
<td>Indicates negative reading.</td>
</tr>
<tr>
<td>4</td>
<td>![AC]</td>
<td>Indicator for AC measurement.</td>
</tr>
<tr>
<td>5</td>
<td>![DC]</td>
<td>Indicator for DC measurement.</td>
</tr>
<tr>
<td>6</td>
<td>![AUTO]</td>
<td>The Meter is in the auto range mode in which the Meter automatically selects the range with the best resolution.</td>
</tr>
<tr>
<td>7</td>
<td>![MANU]</td>
<td>Indicator for manual ranging mode. (optional)</td>
</tr>
<tr>
<td>8</td>
<td>![OL]</td>
<td>The input value is too large for the selected range.</td>
</tr>
<tr>
<td>9</td>
<td>![hFE]</td>
<td>Transistor testing indicator.</td>
</tr>
<tr>
<td>10</td>
<td>![Test of Diode]</td>
<td>Test of diode.</td>
</tr>
<tr>
<td>11</td>
<td>![Continuity Buzzer]</td>
<td>The continuity buzzer is on.</td>
</tr>
<tr>
<td>12</td>
<td>![MAX/MIN]</td>
<td>Maximum and Minimum reading.</td>
</tr>
<tr>
<td>13</td>
<td>![Data Output]</td>
<td>Data output is in progress. (optional)</td>
</tr>
</tbody>
</table>
| 14 | ![Battery Low] | The battery is low.
| | ![Warning] | Warning: To avoid false readings, which could lead to possible electric shock or personal injury, replace the battery as soon as the battery indicator appears. |
| 15 | ![Sensor Test] | Sensor test is in progress |
| 16 | ![REL] | The REL is on to display the stored value minus the present value. |
| 17 | Ω, kΩ, MΩ | Ω: Ohm. The unit of resistance.
kΩ: kilohm. 1 x 10^3 or 1000 ohms.
MΩ: Megaohm. 1 x 10^6 or 1,000,000 ohms. |
| | mV, V | V: Volts. The unit of voltage.
mV: Millivolt. 1 x 10^-3 or 0.001 volts. |
A: Amperes (amps). The unit of current.
mA: Milliamp. 1 x 10^-3 or 0.001 amperes
µA: Microamp. 1x 10^-6 or 0.000001 amperes

µF: Microfarad. 1 x 10^-6 or 0.000001 farads.
nF: Nanofarad. 1 x 10^-9 or 0.000000001 farads.

°C, °F
°C: Centigrade. The unit of temperature (optional).
°F: Fahrenheit. The unit of temperature (optional).

Hz: Hertz. The unit of frequency in cycles/second.
kHz: Kilohertz. 1 x 10^3 or 1,000 hertz.
MHz: Megahertz. 1 x 10^6 or 1,000,000 hertz.

- The unit of transistor

- Warning
To avoid harms to you or damages to the Meter from electric shock, please do not attempt to measure voltages higher than 1000V although readings may be obtained.

When measuring high voltage, take extra care to avoid electric shock.
1. Insert the red test lead into the V terminal and the black test lead into the COM terminal.
2. Set the rotary switch to V; DC measurement is default or press BLUE button to switch between DC and AC measurement mode.
3. Connect the test leads across with the object being measured. The measured value shows on the display.
 Display effective value of sine wave (mean value response),
 - Input Amplitude: (DC electric level is zero)
 - Input Amplitude: ≥ range×30%
 - Frequency response: ≤ 400Hz
Note
- In each range, the Meter has an input impedance of 10MΩ except mV range which input impedance is 3000MΩ. This loading effect can cause measurement errors in high impedance circuits. If the circuit impedance is less than or equal to 10kΩ, the error is negligible (0.1% or less).
- When measuring mV, you must press RANGE manually to enter mV range.
- When voltage measurement has been completed, disconnect the connection between the testing leads and the circuit under test, and remove the testing leads away from the input terminals of the Meter.

B. DC/AC Current Measurement (See figure 3)

Warning
Before connecting the Meter to the return circuit to be tested, cut off the current of the return circuit.

If the fuse burns out during measurement, the Meter may be damaged or the operator himself may be hurt.

Use proper terminals, function, and range for the measurement.

When the testing leads are connected to the current terminals, do not parallel them across any circuit.

1. Insert the red test lead into the mAµA or A input terminal and the black test lead into the COM terminal.
2. Set the rotary switch to µA, mA, or A.
3. The Meter defaults to DC current measurement mode. To toggle between DC and AC current measurement function, press BLUE button.
4. Connect the test lead in serial to the return circuit to be tested. The measured value shows on the display.

 Display effective value of sine wave (mean value response).

5. Press Hz% to obtain the frequency and duty cycle value.
 - Input Amplitude: (DC electric level is zero)
 - Input Amplitude: range × 30%
 - Frequency response: ≤ 400Hz
Note

- If the value of current to be measured is unknown, use the maximum measurement position, and reduce the range step by step until a satisfactory reading is obtained.
- For safety sake, each measurement time for >5A current should be less than 10 seconds and the interval time between 2 measurements should be greater than 15 minutes.
- When current measurement has been completed, disconnect the connection between the testing leads and the circuit under test, and remove the testing leads away from the input terminals of the Meter.

C. Measuring Resistance (See figure 4)

⚠️ Warning

To avoid damages to the Meter or to the devices under test, disconnect circuit power and discharge all the high-voltage capacitors before measuring resistance.

To avoid harm to yourself, do not input higher than DC 60V or AC 30V voltages.

To measure resistance, connect the Meter as follows:

1. Insert the red test lead into the Ω terminal and the black test lead into the COM terminal.
2. Set the rotary switch to Ω resistance measurement (Ω) is default or press BLUE button to select Ω measurement mode.
3. Connect the test leads across with the object being measured. If there is lead on the resistor or SMT resistor, it is more convenience to use the included multi-purpose socket to carry out testing. The measured value shows on the display.
D. Testing for Continuity (See figure 5)

Warning
To avoid damages to the Meter or to the devices under test, disconnect circuit power and discharge all the high-voltage capacitors before testing for continuity. To avoid harm to yourself, do not input higher than DC 60V or AC 30V voltages.

To test for continuity, connect the Meter as below:

1. Insert the red test lead into the terminal and the black test lead into the COM terminal.

3. The buzzer sounds continuously if the resistor to be tested is \(< 10 \Omega \).

\(> 35 \Omega \).

Note

- The test leads can add 0.2\(\Omega \) to 0.5 \(\Omega \) of error to resistance measurement. To obtain precision readings in low-resistance measurement, short-circuit the input terminals beforehand, using the relative measurement function button RELΔ to automatically subtract the value measured when the testing leads are short-circuited from the reading.
- If \(\Omega \) reading with shorted test leads is not \(\leq 0.5 \Omega \), check for loose test leads or other reasons.
- For high-resistance measurement (>1M\(\Omega \)), it is normal to take several seconds to obtain a stable reading. To obtain stable reading, use test lead as short as possible or use the included multi-purpose socket to carry out measurement.
- The LCD displays OL indicating open-circuit for the tested resistor or the resistor value is higher than the maximum range of the Meter.
- When resistance measurement has been completed, disconnect the connection between the testing leads and the circuit under test, and remove the testing leads away from the input terminals of the Meter.
E. Testing Diodes (See figure 6)

⚠️ Warning
To avoid possible damage to the Meter and to the device under test, disconnect circuit power and discharge all high-voltage capacitors before testing diodes.

To avoid harm to yourself, do not input higher than DC 60V or AC 30V voltages.

1. Insert the red test lead into the Ω terminal and the black test lead into the COM terminal.
2. Set the rotary switch to ➔ and press BLUE button to select ➔ measurement mode.
3. For forward voltage drop readings on any semiconductor component, place the red test lead on the component's anode and place the black test lead on the component's cathode. The measured value shows on the display.

Note
- In a circuit, a good diode should still produce a forward voltage drop reading of 0.5V to 0.8V; however, the reverse voltage drop reading can vary depending on the resistance of other pathways between the probe tips.
- Connect the test leads to the proper terminals as said above to avoid error display. The LCD will display OL indicating diode being tested is open or polarity is reversed. The unit of diode is Volt (V), displaying the forward voltage drop readings.
- When diode testing has been completed, disconnect the connection between the testing leads and the circuit under test, and remove the testing leads away from the input terminals of the Meter.
F. Capacitance Measurement (See figure 7)

⚠️ Warning
To avoid damage to the Meter or to the equipment under test, disconnect circuit power and discharge all high-voltage capacitors before measuring capacitance. Use the DC Voltage function to confirm that the capacitor is discharged.

To measure capacitance, connect the Meter as follows:

1. Insert the red test lead into the ‘+’ terminal and the black test lead into the COM terminal.

2. Set the rotary switch to ‘F’ and press BLUE button to select ‘F’ measurement mode.
 - At that time, the Meter will display a fixed value as below which is the Meter internal fixed distributed capacitance value (around 10nF). To ensure accuracy when measuring a small value of capacitance, the tested value must subtract this value, REL mode can help on that.
 - For more convenience, use the included multi-purpose socket for measuring capacitor with leads or SMT capacitor. Insert the capacitor to be tested into the corresponding ‘+’ and ‘-’ jack of the multi-purpose socket. This method is more stable and correct for small value of capacitance testing.

3. Connect the test leads across with the object being measured. The measured value shows on the display.

Note
- It takes a longer time when the tested capacitor is more than 100uF
- The LCD displays OL indicating the tested capacitor is shorted or it exceeds the maximum range.
- When capacitance measurement has been completed, disconnect all the connection between multi-purpose socket, capacitor and the Meter.
G. Frequency Measurement (see figure 8)

⚠️ Warning
To avoid personal harm, do not attempt to input higher than 30V rms tested frequency voltage

To measure frequency, connect the Meter as follows:

1. Insert the red test lead into the Hz terminal and the black test lead into the COM terminal.
2. Set the rotary switch to Hz%; frequency measurement (Hz) is default or press Hz % button to select Hz measurement mode.
3. Connect the test leads across with the object being measured. The measured value shows on the display.
4. If you need to measure duty cycle, press Hz% button to select % measurement mode

Note
- Input Amplitude: (DC electric level is zero)
 - When 10Hz ~ 10MHz: 200mV≤a ≤ 30Vrms
- When frequency measurement has been completed, disconnect the connection between the testing leads and the circuit under test, and remove the testing leads away from the input terminals of the Meter.
H. Transistor hFE Measurement (See figure 9)

1. Set the rotary switch to hFE.
2. Insert the multi-purpose socket into the input terminal as shown on figure 9.
3. Insert the transistor to be tested into the corresponding multi-purpose socket jacks.
4. The LCD display hFE nearest value

Note
- When transistor measurement has been completed, disconnect all the connection between multi-purpose socket, transistor and the Meter.

I. EF Function (See figure 10)

To use EF function, connect the Meter as follows:
1. Set the rotary switch to EF and remove the test lead from the input terminals.
2. Place the housing front part with marking \(\Delta \) towards the object being measured.
3. When the test value is too high, the buzzer beeps and the red LED lights.
Hold button

⚠️ Warning
To avoid possibility of electric shock, do not use Hold mode to determine if circuits are without power. The Hold mode will not capture unstable or noisy readings. The Hold mode is applicable to all measurement functions.
- Press HOLD to enter Hold mode; the Meter beeps.
- Press HOLD again to exit Hold mode; the Meter beeps.
- In Hold mode, \(\Box \) is displayed.

RANGE button
- Press RANGE to enter the manual ranging mode; the Meter beeps.
- Press RANGE to step through the ranges available for the selected function; the Meter beeps.
- Press and hold RANGE for over 2 seconds to return to autoranging; the Meter beeps.

MAX MIN button
- Press MAX MIN to start recording of maximum and minimum values. Steps the display through high (MAX) and low (MIN) readings. The Meter enters manual ranging mode after pressing MAX MIN button.
- Press and hold MAX MIN for over 2 seconds to exit MAX MIN mode and return to the present measurement range.

The Use of Relative Value Mode
The REL mode applies to all measurement functions except frequency/duty cycle measurement. It subtracts a stored value from the present measurement value and displays the result.

For instance, if the stored value is 20.0V and the present measurement value is 22.0V, the reading would be 2.0V. If a new measurement value is equal to the stored value then display 0.0V.

To enter or exit REL mode:
- Press REL\(\Delta \) to enter REL mode, and the present measurement range is locked and display “0” as the stored value.
- Press REL\(\Delta \) again to reset the stored value and exit REL mode.

The BLUE button
It uses for selecting the required measurement function when there is more than one function at one position of the rotary switch.

Turning on the Display Backlight

⚠️ Warning
In order to avoid the hazard arising from mistaken readings in insufficient light or poor vision, please use Display Backlight function.
- Press and hold HOLD/LIGHT for over 2 seconds to turn the Display Backlight on. Press and hold this button for 2 seconds again to turn off the backlight.
- The display backlight will automatically off around after 25 seconds.
Sleep Mode

To preserve battery life, the Meter automatically turns off if you do not turn the rotary switch or press any button for around 15 minutes.

The Meter can be activated by turning the rotary switch or pressing any button.

General Specifications

- Maximum Voltage between any Terminals and Grounding:
 Refer to the different ranges input protection voltage..
- \(\triangle \) Fused Protection for \(\mu \)AmA Input Terminal: 1A H 240V \(\phi \)6x25mm.
- \(\triangle \) Fused Protection for 10A Input Terminal: 10A H 240V \(\phi \)6x25mm.
- Display
 Maximum reading 4000 (frequency 9999), analogue bar graph 41 segments.
- Measurement Speed: Updates 2~3 times/second.
- Range: Auto or Manual
- Polarity Display: Auto
- Overload indication: Display OL
- Battery Deficiency: Display \(\square \)
- Temperature:
 - Operating: 0°C to +40°C (32°F to +104 °F).
 - Storage: -10°C to +50°C (14 °F to +122°F).
- Relative Humidity:
 - \(\leq 75\% \) @ 0°C ~ 30°C below
 - \(\leq 50\% \) @ 30 - 40°C.
- Battery Type: One piece of 9V (NEDA1604 or 6F22 or 006P).
- Under the influence of radiated Radio-Frequency electromagnetic Field phenomenon, the captioned model have a measurement error, it will be back to normal when the interference is removed.
- Dimensions (HxWxL): 180 x 87 x 45mm / 7.1 x 3.4 x 1.8inch
- Weight: Approximate 384g / 13.6oz (battery included).
- Safety/Compliances:
 IEC61010 CAT.III 1000V, CAT.IV 600V overvoltage and double insulation standard.
- Certifications: \(\mathcal{\varepsilon} \)
Accuracy Specifications

Accuracy ± a% reading + b digits. guarantee for 1 year.
Operating temperature 18°C~28°C.
Relative humidity <75%.

A. DC Voltage

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Input Impedance</th>
<th>Fixed Value Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>400mV</td>
<td>0.1mV</td>
<td>±(0.8%+3)</td>
<td>Around >3000MΩ</td>
<td>1000V dc / 750V ac</td>
</tr>
<tr>
<td>4V</td>
<td>0.001V</td>
<td>±(0.5%+1)</td>
<td>Around 10MΩ</td>
<td></td>
</tr>
<tr>
<td>40V</td>
<td>0.01V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400V</td>
<td>0.1V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000V</td>
<td>1V</td>
<td>±(1.0%+3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. AC Voltage

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy 45~400Hz</th>
<th>Input Impedance</th>
<th>Fixed Value Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>4V</td>
<td>0.001V</td>
<td>±(1.0%+3)</td>
<td>Around >3000MΩ</td>
<td>1000V dc / 750V ac</td>
</tr>
<tr>
<td>40V</td>
<td>0.01V</td>
<td>±(1.2%+5)</td>
<td>Around 10MΩ</td>
<td></td>
</tr>
<tr>
<td>400V</td>
<td>0.1V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750V</td>
<td>1V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Displays effective value of sine wave. mV range is applicable from 5% of range to 100% of range.
DC Current

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Overload Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>400μA</td>
<td>0.1μA</td>
<td>(1.0%+2)</td>
<td>Fuse 1: F1A H 240V(CE), Φ6 x 25mm</td>
</tr>
<tr>
<td>4000μA</td>
<td>1μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40mA</td>
<td>0.01mA</td>
<td>(1.2%+3)</td>
<td></td>
</tr>
<tr>
<td>400mA</td>
<td>0.1mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td>0.001A</td>
<td>(1.5%+3)</td>
<td>Fuse 2: F10A H 240V (CE), Φ6 x 25mm</td>
</tr>
<tr>
<td>10A</td>
<td>0.01A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
- When \(\leq 5A \): Continuous measurement is allowed.
- When \(>5A \): Continuous measurement less than 10 seconds at an interval more than 15 minutes.

AC Current

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy 45Hz~400Hz</th>
<th>Overload Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>400μA</td>
<td>0.1μA</td>
<td>(1.2%+5)</td>
<td>Fuse 1: F1A H 240V (CE), Φ6 x 25mm</td>
</tr>
<tr>
<td>4000μA</td>
<td>1μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40mA</td>
<td>0.01mA</td>
<td>(1.5%+5)</td>
<td></td>
</tr>
<tr>
<td>400mA</td>
<td>0.1mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td>0.001A</td>
<td>(2.0%+5)</td>
<td>Fuse 2: F10A H 240V (CE), Φ6 x 25mm</td>
</tr>
<tr>
<td>10A</td>
<td>0.01A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
- When \(\leq 5A \): Continuous measurement is allowed.
- When \(>5A \): Continuous measurement less than 10 seconds at an interval more than 15 minutes.
- Displays effective value of sine wave.

Resistance

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Overload Protection</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>400Ω</td>
<td>0.1Ω</td>
<td>±(1.2%+2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4kΩ</td>
<td>0.001kΩ</td>
<td>±(1.0%+2)</td>
<td>1000V dc / 750V ac</td>
<td></td>
</tr>
<tr>
<td>40kΩ</td>
<td>0.01kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400kΩ</td>
<td>0.1kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4MΩ</td>
<td>0.001MΩ</td>
<td>±(1.2%+2)</td>
<td></td>
<td>When measuring below 2kΩ, apply REL Δ to ensure measurement accuracy.</td>
</tr>
<tr>
<td>40MΩ</td>
<td>0.01MΩ</td>
<td>±(1.5%+2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
F. Capacitance

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Overload Protection</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>40nF</td>
<td>0.01nF</td>
<td>±(3.0%+5)</td>
<td>1000V dc / 750V ac</td>
<td>There is around 10nF residual reading when the circuit is open</td>
</tr>
<tr>
<td>400nF</td>
<td>0.1nF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4µF</td>
<td>0.001µF</td>
<td>±(4.0%+5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40µF</td>
<td>0.01µF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400µF</td>
<td>0.1µF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000µF</td>
<td>1µF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G. Frequency

<table>
<thead>
<tr>
<th>Range</th>
<th>Accuracy</th>
<th>Maximum Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>10Hz~10MHz</td>
<td>(0.1%+4)</td>
<td>0.01Hz</td>
</tr>
</tbody>
</table>

- Overload Protection: 1000Vdc/750V ac
- Input Amplitude: (DC electric level is zero)
 - When 10Hz ~ 10MHz: 200mV \(< a < 30 \text{Vrms} \)
 - When measuring on line frequency or duty cycle under AC Voltage and Current measurement mode, the input amplitude and frequency response must satisfy the following requirement:
 - Input amplitude \(\geq \text{range} \times 30\% \)
 - Frequency response: \(\leq 400\text{Hz} \)

H. Diode Test

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Remarks</th>
<th>Overload Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001V</td>
<td>Open circuit voltage around 2.8V</td>
<td>1000V dc / 750V ac</td>
</tr>
</tbody>
</table>

I. Continuity Test

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Overload Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1Ω</td>
<td>1000V dc / 750V ac</td>
</tr>
</tbody>
</table>

- Open circuit voltage is around 0.45V.
- Broken circuit resistance value is around \(> 35\Omega \), the buzzer does not beep.
- Good circuit resistance value is \(\leq 10\Omega \), the buzzer beeps continuously.

J. Transistor hFE (Model UT61A only)

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>hFE</td>
<td>1β</td>
<td>(I_{bo} \approx 10\mu A) 1000 (\beta) MAX</td>
</tr>
</tbody>
</table>
This section provides basic maintenance information including battery and fuse replacement instruction.

⚠️ Warning
Do not attempt to repair or service your Meter unless you are qualified to do so and have the relevant calibration, performance test, and service information.

To avoid electrical shock or damage to the Meter, do not get water inside the case.

A. General Service
- Periodically wipe the case with a damp cloth and mild detergent. Do not use abrasives or solvents.
- To clean the terminals with cotton bar with detergent, as dirt or moisture in the terminals can affect readings.
- Turn off the power of the Meter when it is not in use.
- Take out the battery when it is using for a long time.
- Do not use or store the Meter in a place of humidity, high temperature, explosive, inflammable and strong magnetic field.

B. Replacing the Battery

⚠️ Warning
To avoid false readings, which could lead to possible electric shock or personal injury, replace the battery as soon as the battery indicator appears.

Make sure the test leads are disconnected from the circuit being tested before opening the case bottom.

To replace the battery: (See figure 11)
1. Turn the Meter power off and remove all connections from the terminals.
2. Remove the screw from the tilt stand and the battery compartment and separate the battery compartment and the tilt stand from the case bottom.
3. Remove the battery from the battery compartment.
4. Replace the battery with a new 9V battery (NEDA1604, 6F22 or 006P)
5. Rejoin the tilt stand, battery compartment and case bottom, and reinstall the screw.
C. Replacing the Fuses

⚠️ Warning
To avoid electrical shock or arc blast, or personal injury or damage to the Meter, use specified fuses only in accordance with the following procedure.

To test the fuse: (See figure 12)
The Meter does not response when measuring current and transistor hFE, go to inspect the Meter built-in fuses.

1. Insert the red test lead into the Ω terminal and the black test lead into the COM terminal;
2. Set the rotary switch to resistance measurement.
3. Insert the test leads into the 10A and mAμA terminals and measure the resistance value between these two terminals. If the value is less than 0.5, the fuses are OK, if the display appears OL, the fuses are broken.

To replace the Meter’s fuse: (See figure 11)
1. Turn the Meter power off and remove all the connections from the terminals.
2. Remove the screw from the tilt stand and the battery compartment and separate the battery compartment and the tilt stand from the case bottom.
3. Remove the two screws from the case bottom, and separate the case top from the case bottom.
4. Remove the fuse by gently prying one end loose, then take out the fuse from its bracket.
5. Install ONLY replacement fuses with the identical type and specification as follows and make sure the fuse is fixed firmly in the bracket.
 - μA mA range: F1, 1A H 240V, 6x25mm. (CE)
 - 10A range: F2, 10A H 240V, 6x25 mm. (CE)
6. Rejoin the case bottom and case top, and reinstall the screw.
7. Rejoin the tilt stand, battery compartment and case bottom, and reinstall the screw.

Questions or Concerns? support@etekcity.com
visit etekcity.com for more products